
2020-07-30

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

Prof. Werner Dietl, Ph.D.

© 2020 by the above. Some rights reserved.

The ternary or
conditional operator

2
Writing comments

Outline

• In this topic, we will

– Review conditional statements

– Describe the conditional operator

• Usually just called “the” ternary operator

– Look at examples

– Recommend the use of comments and parenetheses

3
Writing comments

Conditional statements

• To date, we have seen unary and binary operators

– The conditional operator takes three operands

– Consequently, it is often just referred to as “the” ternary operator

• We have seen conditional statements,

 but both the consequent and alternative bodies must be

 separate statements

if (condition) {

 // consequent body

} else {

 // alternative body

}

4
Writing comments

The conditional operator

• The ternary operator works as follows:

 condition ? consequent-expression : alternative-expression

• If the condition is true,

 the operator evaluates to the consequent expression

 otherwise, the operator evaluates to the alterative expression

• The ternary operator can be used wherever the expressions would be
appropriate

2020-07-30

2

5
Writing comments

The conditional operator

• For example:

double abs(double x) {

 return (x >= 0.0) ? x : -x;

}

double sinc(double x) {

 return (x != 0.0) ? (std::sin(x)/x) : 1.0;

}

6
Writing comments

The conditional operator

• To see how it can be used in an arithmetic expression:

int main() {

 double x{};

 double y{};

 double diff{};

 std::cout << "Enter a value of x: ";

 std::cin >> x;

 std::cout << "Enter a value of y: ";

 std::cin >> y;

 diff = ((x >= y) ? x : y) - ((x <= y) ? x : y);

 std::cout << "|x - y| = " << diff << std::endl;

 return 0;

}

7
Writing comments

The conditional operator

• Suppose you are converting a double to an int:
int main() {

 double x{};

 unsigned int n{};

 while (true) {

 std::cout << "Enter a positive double: ";

 std::cin >> x;

 if (x >= 0.0) {

 break;

 }

 }

 n = (x >= 4294967295.0) ? 4294967295 : x;

 std::cout << n << std::endl;

 return 0;

}

Enter a positive real: 3.14

3

Enter a positive real: 9876543210

4294967295

8
Writing comments

The conditional operator

• Note that you don’t have to remember or recalculate 232 – 1:
#include <iostream>

#include <limits>

int main();

int main() {

 std::cout << "Min int: "

 << std::numeric_limits<int>::min() << std::endl;

 std::cout << "Max int: "

 << std::numeric_limits<int>::max() << std::endl;

 std::cout << "Min unsigned int: “

 << std::numeric_limits<unsigned int>::min() << std::endl;

 std::cout << "Max unsigned int: "

 << std::numeric_limits<unsigned int>::max() << std::endl;

 return 0;

}

Output:
 Min int: -2147483648
 Max int: 2147483647
 Min unsigned int: 0
 Max unsigned int: 4294967295

2020-07-30

3

9
Writing comments

The conditional operator

• Suppose you are trying to avoid a division by zero:
int main() {

 unsigned int m{};

 unsigned int n{};

 std::cout << "Enter a non-negative integer: ";

 std::cin >> m;

 std::cout << "Enter another non-negative integer: ";

 std::cin >> n;

 int result{ (n == 0) ? std::numeric_limits<unsigned int>::max()

 : (m/n) };

 std::cout << "m/n = " << result << std::endl;

 return 0;

}

10
Writing comments

The conditional operator

• Suppose you are trying to avoid a division by zero:
int main() {

 int m{};

 int n{};

 std::cout << "Enter an integer: ";

 std::cin >> m;

 std::cout << "Enter another integer: ";

 std::cin >> n;

 int result{ (n == 0) ? ((m < 0) ? -4294967295 : 4294967295)

 : (m/n) };

 std::cout << "m/n = " << result << std::endl;

 return 0;

}

11
Writing comments

Comments and parentheses

• The conditional operator is not natural for most programmers

– It is beneficial to comment any ternary operator that is more
complex than just evaluating to one statement

• If any of the operands are any more complex than

– A local variable, parameter, function call or literal

– One of these with a unary operator

 put parentheses around them

• If the conditional operator is being used in an algebraic or logical
expression,

 put parentheses around the entire operator and its operands

– If it is the right-hand side of an assignment,

 parentheses are not needed

12
Writing comments

Summary

• Following this lesson, you now:

– Understand the C++ conditional or “ternary” operator

– Know how to use it

– Understand you should be careful with it:

• Use comments and parentheses to make your intentions clear

2020-07-30

4

13
Writing comments

References

[1] Wikipedia: https://en.wikipedia.org/wiki/%3F:

14
Writing comments

Acknowledgments

None so far.

15
Writing comments

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

16
Writing comments

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

